

Essential Parameters for the Visibility of IQIs and Small Indications in Digital Radiography

Uwe EWERT¹, Uwe ZSCHERPEL¹, Justus VOGEL¹, Fangzhou ZHANG², Nghiem Xuan LONG³, Tien Phong NGUYEN³

¹ BAM Bundesanstalt für Materialforschung und -prüfung, Berlin, Germany ² Dresden International University (DIU), Dresden, Germany

³ Center for Non-Destructive Evaluation, (NDE); Vietnam Atomic Energy Institute (VINATOM); Ministry of Science and Technology (MOST), Hanoi, Vietnam

Contact e-mail: uwe.ewert@bam.de

Abstract

The visibility of flaws and image quality indicators (IQI) by human operators has been discussed for film radiography (RT-F) over decades. Wire type image quality indicators (IQIs) have been used in Germany for evaluation of the radiographic image quality since 1935 (DIN 1915:1935) and later in most European countries. In the USA and France traditionally hole type IQIs (ASTM E 1025 since 1984 or E 1742 since 1992 or its predecessor MIL STD-543 since 1962) are used. With introduction of digital radiography and the globalization of the NDT market the conversion formulas for wire to hole type IQI visibility were discussed and investigated again. Basically the current standard requirements of the standards ISO 19232-3, French RCCM code, ASTM E 747 and ASME BPVC Section V Article 2, Table T-276 are compared. Significant differences, especially at high energy radiography, were found in the different standards. The fixed pattern noise of some digital detectors result in different noise spectra, which influences the visibility of different IQIs and the conversion formulas for wire IQIs to hole type IQIs. Studies based on measurement of basic spatial resolution, and contrast to noise ratio were performed together with modulation transfer function measurements considering the noise spectra in dependence on the spatial frequency. Wire IQIs, plate hole IQIs, step hole IQIs and EPS IQIs based on ASTM E 746 were numerically modelled and measured to verify the influence of the different parameters. The study has been performed with film, imaging plates and digital detector arrays to analyze differences. Formulas for the conversion of perception thresholds for wire IQIs and hole type IQIs are derived. In consequence the standards for characterization and classification of computed radiography (ASTM E 2446, ISO 16371) and radiography with DDAs (ASTM E 2597) need to be revised.

Key words: Image quality, Radiography, Radioscopy, Radiology, Imaging Plates, Computed Radiography, Digital Detector Arrays, MTF, CNR, basic spatial resolution.

Sept. 7th, 2017, EAW, Potsdam

ESSENTIAL PARAMETERS FOR THE VISIBILITY OF IQIS AND SMALL INDICATIONS IN DIGITAL RADIOGRAPHY

U. Ewert¹, U. Zscherpel¹, J. Vogel¹, F. Zhang², N.X. Long³, T.P. Nguyen³

¹ BAM Bundesanstalt für Materialforschung und -prüfung, Berlin, Germany

- ² Dresden International University, Germany
- ³ NDE Center, VINATOM, Hanoi, Vietnam

Outline

uwe.ewert@bam.de

- Image quality in Radiography

- Observer model based on rose concept
- Essential system parameters for hole visibility
 - Basic spatial resolution (SR_b^{image}),
 - SNR and SNR_N,
 - Relative specific contrast and effective attenuation coefficient.
- Characterization standards for CR-systems and DDA systems.
- Equivalent penetrameter sensitivity (EPS) and probability of detection (POD)
- Wire visibility vs. hole visibility (ISO 19232-3, ISO 17636-2 vs. ASME BPVC Sect. V article 2, E 747-10)
- Extended observer model based on presampled Modulation Transfer Functions and Normalized Noise Power spectra

🕇 вам

Influence of Image Noise on Detail Visibility

Noise Sources in Radiographic Images SAM

Typical noise sources in digital radiography:

- 1. EXPOSURE CONDITIONS: Photon noise, depending on exposure dose (e.g. mAs or GBq·min). *This is the main factor!* SNR increases with higher exposure dose.
- 2. Limitation for the maximum achievable SNR:
 - 1. **DETECTOR:** Structural noise of DDAs and Imaging Plates also called fixed pattern noise (due to variations in pixel to pixel response and inhomogeneities in the phosphor layer).

2. <u>OBJECT:</u>

- Crystalline <u>structure of material</u> (e.g. nickel based steel, mottling)
- 2. Surface roughness of test object

Calculating the Vision of Human Observer **S** BAM

07.09.2017

0.51.11

Image Quality in Radiography

31

Human Observer Model: Perception Threshold PT

4

200

5

Detector = 50 µm pixel size or magnification technique

- Large area flaws are better visible than small ones at same Contrast-to-Noise Ratio
- > Each row has indications with same $CNR = C_{denth}/\sigma$
- Each column has holes with same diameter

Flat bottom holes of different depth and di SR_b image = 50 μm

$$PT_{const} = \frac{\sqrt{A_{lateral}} \cdot C_{depth}}{SR_{h} \cdot \sigma}$$

Rose approach, 1946

2T = 0.5 mm / 0.02''Calculated CNR_{min} = 1

Noise = 1000Signal = 30000

A_{lateral}

CNR = 2.5

CNR = 1.25

CNR = 0.625

PT	-	human perception threshold
A _{latera}	ы —	area of just visible indication
C _{depth}	, –	mean contrast of just visible indication
σ	-	noise of image (N)
SR⊾	_	basic spatial resolution (effective pixel size)

Essential Parameters for Calculation of Just Visible IQI for 1T Hole Diameter

New CR Characterization Scheme

BAM

New characterization by performance levels of ASTM E 2446-15

CR System Performance Levels	Required Minimum SNR_N (Normalized to SR_b =88.6 µm)	Permitted Maximum iSR _b ^{detector} Value [µm]	Permitted Maximum EPS by E746 [%] ^A
CR Special	200	50	1.00
CR Level I	100	100	1.41
CR Level II	70	160	1.66
CR Level III	50	200	1.92

CR level II example:

 $\begin{array}{l} \text{EPS} = 1.4 \ \% \\ \text{with} \\ \mu_{eff} = 0.05 \ \text{mm}^{-1}, \ \text{SNR}_{\text{N}} = 100, \\ \text{PT} = 200, \qquad t_{\text{testplate}} = 19 \ \text{mm} \end{array}$

 $EPS = \frac{200\%}{19mm} \sqrt{\frac{0.0886}{0.05 \cdot 100}}$

$$EPS = \frac{PT'}{t_{testplate}} \sqrt{\frac{SR_b^{image}}{\mu_{eff} \cdot SNR}}$$

EPS Characterization of CR-Systems - ASTM EPS Procedure E 747 -

EPS – Procedure is accepted for CR qualification in *ASTM E 2445/6 and "Practice for the Use of Computed Radiography for Aerospace Casting Inspections" (USA: MAI – group, Guidelines for the Use of DDA and CR for Aerospace Casting Inspections)*

- The EPS (equivalent penetrameter sensitivity) measurement is based on ASTM E 746
- A smooth ¾ inch (19 mm) steel plate with a set of hole plates is radiographed at 200 kV in ≥ 1 m distance
- The exposure is performed with different mAs settings for determination of the working range.

07.09.2017

Image Quality in Radiography

Example: EPS Test with HD CR Scanner, HD IP and Acquired with 20 µm Pixel Size

9

SAM

Visibility of EPS holes (E 746)

07.09.2017

Image Quality in Radiography

Working Range for CR (ASTM E 2445/6, MAI)

11

S BAM

< BAM

POD by EPS

EPS method and POD (â vs. a) method have similarities

- Visibility of holes depends on hole diameter, contrast and noise.
- Procedure: Counting of visible holes out of 30 within different rows and calculation of its percentage.
- Graph on visible hole percentage (â) as function of shim-EPS-values (a) provides a POD_{50%} value.

07.09.2017

Image Quality in Radiography

Wire vs. Hole Visibility

13

- Different international standards use different conversion equations for conversion of wire visibility to plate hole or step hole visibility.
- Both were validated, but one is obviously wrong.
- BAM evaluated the ISO conversion formula with good results.
- Therefore: Only hole visibility is considered in the following discussion.

Test Results for Different Digital Systems

⋜ BAM

- The concept of Rose is basically related to "white noise", but practical results dependent on the presampled MTF and noise spectra.
- The change of PT' in dependence on MTF and noise spectra was investigated.
- Additionally, the measured EPS is also sensitive to scattered radiation.

Test Results for Different Digital Systems: 1x DDA, 2x CR

Sensitive against scatter if PT' should be 200! $\mu_{eff} < 0.05 \text{ mm}^{-1}$ SR_bdetector ΡΤ Contrast/ aSNR aEPS System aSNR_M average μ_{eff} mm⁻ % mm 230 0.05 DDA Dexela CsI 0.081 650 720 ¹0.59 **IP** standard 0.098 280 0.038 270 265 1.41 0.077 280 0.036 IP high resolution 130 145 1.85 ¹calculated Cannot be explained by Rose concept noise spectra required The image quality of imaging plates is limited by its structural noise at 25,5% exposure with high dose 16

MTF and SNR as Function of Spatial Frequency

- Contrast response is measured by a presampled Modulation Transfer Function (MTF).
- > Noise response is measured by a *normalized noise power spectrum* (NNPS).
- > The public domain tool "DQE panel v7" under ImageJ was used.
- Images with "white noise" and frequency limited noise were simulated with Matlab (no scatter, no shading) to validate the procedure of "DQE panel v7".
- Two CR systems and 1 DDA system were evaluated to investigate the different PT' values obtained in experiments.

Images with pixel limited unsharpness (e.g. film) and white noise as function of spatial frequency

MTF and SNR as Function of Spatial Frequency

BAM

Frequency limited image, filtered with 2x2 moving average filter (e.g. digitized film)

Application Results DDA- and 2x CR-Systems

19

S BAM

- > The visibility calculation is based on an extended Rose concept.
- The visibility approximation is valid for hole images with diameters < 12 mm and at least 2x2 pixels in the hole of noisy images.
- ➤ A visibility function "V" is calculated by

 $V(fs) = (d_{hole}/SR_b^{image}) \cdot CNR(fs, \Delta w)/(2 \cdot fs) \cdot$

- > The hole is visible if $V > PT'(EPS_shim_thickness \Delta w)$.
- The CNR(fs) is calculated here for a shim plate of 1 mm thickness with holes of different thickness (0.5 – 0.81 mm) on a 19 mm absorber plate as described in ASTM E746.
- Different PT' values are calculated based on the thickness of the EPS shims in mm (ASTM E 746).

07.09.2017

Image Quality in Radiography

21

Summary

- The visibility of image quality indicators (IQI) depends mainly on contrast, unsharpness and noise in digital images.
- Rose introduced 1946 that the visibility of hole indications in camera images depends on the hole diameter (d_{hole}) and contrast to noise ratio (CNR).
 - The indications are visible for human observers, if d_{hole} · CNR > PT, with PT as perception threshold.
- Additionally to the parameters SNR_N and iSR_b^{detector}, the equivalent penetrameter sensitivity (EPS) was introduced as classifier for determination of the performance level of CR systems in ASTM E 2446-16.
- Recent investigation have shown that the PT value changes in dependence on the digital system parameters.
- The Rose model was extended by measurement of the presampled modulation transfer functions (MTF) and normalized noise power spectra (NNPS).
- SNR, CNR and visibility curves were derived as function of spatial frequency.

07.09.2017

Image Quality in Radiography

Acknewledgement

➤ We thank

Dr. P. Willems for interesting discussions and support.

23

